Astrometric Error Measurements using a dithered array of 40,000 stars

Andrew Bradshaw PACCD 2014/12/6

With help from:
Tony Tyson
Kirk Gilmore
Craig Lage
Perry Gee
John Warren
Elodie Resseguie
Matt Klint

Outline

- Our f/1 beam simulator lab, 40k pinhole array and dither method
- 2) Overview analysis method for CCD segments
- 3) Modeling of edge occultation effect
- 4) Astrometric residuals near edges of segments
- Modeling pixel boundary shift at edges and qualitative comparison to measurements

LSST f/1 Beam Simulator @ UCD

STA 1920A layout & naming conventions

40,000 pinholes, 30 micron diameter, spaced 200 microns

Dither animations

Analysis pipeline (1)

- Acquire exposures:
 - 300 dithered images w/ X&Y sub-pix shifts
 - 6 illumination levels, max=1,000→60,000 e-
 - Only R filter so far
- Debias subsegment:
 - Create master bias from 250 bias frames
 - Use overscan to remove intermittent line noise
 - Subtract master bias (overscan subtracted)
 from sub-segment (also overscan subtracted)

Analysis pipeline (2)

- Identify ~2000 pinholes in each segment frame using SExtractor
 - Catalog created has precision X&Y centroids, fluxes, & shapes measured
- Use python to read in consecutive catalogs and compute median shift of all pinholes in X & Y
- Measure deviation, Δ, from median shift in region of interest (i.e. edges, bloom stops)
 - Median shift known to better than .05 pixel

CPU time per 300 images: ~100min

How to model a pixelized pinhole image

(Necessary for modeling the occultation effect at each edge)

subpixel grid

Animation of model pixelized PSF approaching an edge

@ left & right edge of seg # 4

@ top, bottom of CCD (seg # 12, 4)

@ bloom stop approached from below (4) and above (12)

CAD masks near serial edge

Potential map near serial edge

Use **toy Poisson model** of scupper, serial, and parallel potentials to predict charge deflection → calculated approx. pixel boundaries shift near serial reg.

CCD Charge Collection. Grid = 256*128*128. Elapsed Time = 42.0 seconds.

Toy model of pixel shift near serial has similar shape & amplitude

Conclusions

- CCDs are not perfect detectors, but are quirky and need to be understood for precision cosmology
- Optimizing CCD performance requires rigorous characterization
- Future work on characterization:
 - Changing wavelength/filter
 - Backside bias
 - Variable sky level
 - Pinhole size (3 micron mask ready to use)
 - Pinhole shape
- Questions, comments, ideas!